Introducing The Pythagoras Theorem

Discover the relationship given in the Pythagorean Theorem, $a^2 + b^2 = c^2$ by computing the areas of the squares. Complete the table. Use the results to describe the relationships.

	Side a	Side b	Hypotenuse, c	a^2	b^2	C
1.	3	4	5	9	lle	25
2.	10	8	10	36	64	100
3.	J. ()	12	13.	25	144	169

1. Which of the following models the Pythagorean Theorem?

c)
$$\frac{3 \text{ in}}{9}$$
 $\frac{3 \text{ in}}{9}$ \frac

 $a^2+b^2=c^2$

2. Which of the following models the Pythagorean Theorem?

3. In the diagram below, RSTU is a rectangle, and the two shaded regions are squares.

$$(4)^{2}+b^{2}=c^{2}$$

If the length of \overline{SR} is 4 m and the length of \overline{ST} is 8 m, what is the length of \overline{PQ} in meters?

$$\sqrt{80} = \sqrt{C^2}$$