

Questions:	Notes:
	Standard Decimal Notation \rightarrow Scientific Notation
	1. Draw an arrow so there is one number to the left of the arrow. Put a decimal point at
	the tip of the arrow. You just created a number between 1 and 10.
	2. Count the spaces from the arrow to the original decimal point.
	This number is your exponent number. It will be positive or negative depending on
	which way you moved when you went from arrow to decimal.
	Move right: positive exponent
	Move left: negative exponent
	3. Write in scientific notation by using the number from Step 1 (with the new decimal
	instead of the arrow) times 10 raised up to the exponent number from Step 2.
	$62,000=\underline{6.2 \times 10^{4}} \quad 125=\underline{1.25 \times 10^{2}}$
	$0.00008852=\underline{8.852 \times 10^{-5}} 0.073=\underline{7.3 \times 10^{-2}}$
	Scientific Notation \rightarrow Standard Decimal Notation
	1. Circle the exponent.
	2. Move the decimal point left or right the number of times shown by the
	exponent.
	Positive exponent: Move decimal right
	Negative exponent: Move decimal left
	3. Rewrite the number
	4. Put zeros in the empty spaces.
	$7.25 \times 10^{5}=\underline{725,000} \quad 5 \times 10^{-2}=\underline{0.05}$
	$9.06 \times 10^{-4}=\underline{\underline{0.00906}} \underline{6.024 \times 10^{6}=\underline{6,024,000}}$

